Nature of deleterious mutation load in Drosophila.

نویسنده

  • P D Keightley
چکیده

Much population genetics and evolution theory depends on knowledge of genomic mutation rates and distributions of mutation effects for fitness, but most information comes from a few mutation accumulation experiments in Drosophila in which replicated chromosomes are sheltered from natural selection by a balancer chromosome. I show here that data from these experiments imply the existence of a large class of minor viability mutations with approximately equivalent effects. However, analysis of the distribution of viabilities of chromosomes exposed to EMS mutagenesis reveals a qualitatively different distribution of effects lacking such a minor effects class. A possible explanation for this difference is that transposable element insertions, a common class of spontaneous mutation event in Drosophila frequently generate minor viability effects. This explanation would imply that current estimates of deleterious mutation rates are not generally applicable in evolutionary models, as transposition rates vary widely. Alternatively, much of the apparent decline in viability under spontaneous mutation accumulation could have been nonmutational, perhaps due to selective improvement of balancer chromosomes. This explanation accords well with the data and implies a spontaneous mutation rate for viability two orders of magnitude lower than previously assumed, with most mutation load attributable to major effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans.

Theory concerning the evolution of sex and recombination and mutation load relies on information on rates and distributions of effects of deleterious mutations. Direct information on the genomic mutation rate in Drosophila implies that an accumulation of mildly deleterious mutations reduces viability of populations by at least 1% per generation. We carried out an experiment to measure the delet...

متن کامل

Inbreeding rate modifies the dynamics of genetic load in small populations

The negative fitness consequences of close inbreeding are widely recognized, but predicting the long-term effects of inbreeding and genetic drift due to limited population size is not straightforward. As the frequency and homozygosity of recessive deleterious alleles increase, selection can remove (purge) them from a population, reducing the genetic load. At the same time, small population size...

متن کامل

Title: The effects of a deleterious mutation load on patterns of influenza

34 Recent phylogenetic analyses indicate that RNA virus populations carry a significant deleterious 35 mutation load. This mutation load has the potential to shape patterns of adaptive evolution via 36 genetic linkage to beneficial mutations. Here, we examine the effect of deleterious mutations on 37 patterns of influenza A subtype H3N2’s antigenic evolution in humans. By first analyzing simple...

متن کامل

The effects of a deleterious mutation load on patterns of influenza A/H3N2's antigenic evolution in humans

Recent phylogenetic analyses indicate that RNA virus populations carry a significant deleterious mutation load. This mutation load has the potential to shape patterns of adaptive evolution via genetic linkage to beneficial mutations. Here, we examine the effect of deleterious mutations on patterns of influenza A subtype H3N2's antigenic evolution in humans. By first analyzing simple models of i...

متن کامل

Evidence for elevated mutation rates in low-quality genotypes.

The deleterious mutation rate plays a key role in a number of important topics in biology, from mating system evolution to human health. Despite this broad significance, the nature and causes of variation in mutation rate are poorly understood, especially in multicellular organisms. We test whether genetic quality, the presence or absence of deleterious alleles, affects the mutation rate in Dro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 144 4  شماره 

صفحات  -

تاریخ انتشار 1996